
What is a data privacy vault?
Why do you need it?

https://skyflow.com/

Contents

Abstract

Side-by-side comparison

So how do we start to deal with our data protection problem?

About Skyflow

3

13

5

15

Mo’ data, mo’ problems

Does anyone use a data vault?

What are the alternatives?

4

14

8

Authored by Manish Ahluwalia, Field CTO, Skyflow

Abstract

Increased security and privacy concerns are forcing financial technology

companies to consider how they deal with what is often their most valuable asset

-- their data. This requires a difficult balancing act where security and regulatory

needs conflict with business goals: security requires locking down data while

fintech companies want to use that same data to derive insights in an agile manner.

In this white paper, we will examine the types of data protection concerns that apply

to your data. While you have a lot of data, only a small amount of it is PII -- personally

identifiable information -- that can be used to identify an individual. This part of

your data should be isolated (logically or physically) from the rest of your data and

managed differently.

3

During this discussion, we will frequently use an analogy with a secrets store /

secrets vault like Hashicorp Vault, or AWS Secrets Manager. You have a lot of

configuration data, but only a small portion of it is sensitive and is treated specially --

by storing just that portion in a vault. Similarly, you have a lot of data, but only some

of it is sensitive -- has data protection obligations.

We will examine the data protection problem and explore the technical

requirements for a solution. Finally, we will iteratively build an architectural pattern

-- the data privacy vault -- that aims to maximize data usage while reducing the

security and compliance risk from doing so.

Mo’ data, mo’ problems

You have lots of sensitive financial data stored in various data stores -- operational

and analytic, backup copies, temporary tables, and so on. You have a variety of

systems and third party integrations that need this data in order to function. Very

likely, your data has a mix of various types of data elements:

1. Elements that are highly sensitive (i.e. have security / privacy / compliance

concerns)

2. Elements that have no confidentiality concerns (i.e. data that is publicly

available, like comments posted to a public forum, or aggregated data)

3. The rest, which lay in between those two extremes

Which data elements fall in which category depends on a number of factors.

Some elements, like a person’s name, are obviously sensitive -- names are classified

like PII under GDPR. A breach of this data would trigger notification obligations and

penalties in some jurisdictions. Other elements vary -- IP addresses, for example, are

considered sensitive in some jurisdictions, not so in others.

Your systems need access to sensitive data in order to meet some use cases. For

instance, you need email addresses for CRM or social security numbers (SSNs) to

perform credit checks. The critical thing to note here is that while a lot of systems

may be accessing the data stores and records that store this sensitive information,

many, if not most, will not really need access to the underlying data. They will either

be simply passing this information along or will be ignoring the sensitive fields.

Other elements are not sensitive in and of themselves but would be sensitive if

4

combined with identifying data. For instance, a credit score of 678 doesn’t mean

anything much by itself, but if you know this is Alice’s credit score, now you have

information about Alice that she might not be happy to have you lose in a breach.

Your system will most certainly have a ton of such data elements that are crucial

to performing your core business functions. It’s important to note that if this data

were not associated with identifiable information, this may not remain sensitive

information. So if you are breached and you lose the information ‘Alice has a

credit score of 678’, you have breach notification obligations, but if you lose the

information ‘User 35 has score 678’, without simultaneously leaking the identity of

user 35 then you do not have breach notification obligations.1

Determining your data protection obligations is a complex issue that we urge you

to learn as much as possible about. You will need to consider applicable legal and

regulatory constraints, contractual obligations, brand reputation impacts, insurance

requirements, and reasonable cost-benefit tradeoffs. As a fintech company, you are

likely storing data which is subject to very stringent financial regulations, particularly

payment card information, adding another layer of complexity.

For now, we will assume that you have figured out what data elements need

protection and what kinds of access you can or must allow to enable your business

to function.

1 If you have sufficient non-identifying personal information, you can often ‘triangulate’ and identify the individual with a combination of non-identifying information. This makes
categorizing what is and isn’t sensitive information a difficult judgement call. Breach notification obligations on the other hand are very specific as to when they are triggered.

So how do we start
to deal with our data
protection problem?

Let’s look at an analogy with configuration information. Most likely, you treat the hostname of your backend server (not

sensitive information, maybe even public info) differently from the login credentials to the server. You store the credentials

in a secrets vault and carefully manage access to them.

By analogy, there are limited use cases that actually need Alice’s name, social security number, or email address. The

majority of use cases may touch User 35’s data but don’t need to know that User 35 is Alice or what her SSN is. Therefore

if you ‘protect’ Alice’s personal data, replace references to Alice with random(ish) pointers and allow limited access to the

real data, you have greatly reduced the size of the problem of securing your company and bringing it into compliance.

Let’s say we have the following highly abstracted and data-centric picture of your architectural components:

In this case, your database clearly

contains sensitive information and

is a security concern. But so are the

‘Readers that don’t need PII’ because

they needlessly have access to

sensitive information.

5

The goal is to minimize exposure without sacrificing functionality at a reasonable cost. There are multiple ways to address

this, but it helps to figure out what an ideal solution’s characteristics would be. Let’s make a list of requirements for the

solution:

1. Functional Equivalence: Your system should not lose access to the data it needs to do its job.

2. Security and Privacy Support: Your system should:

 a. Encrypt the data at rest and during transmission

 b. Provide authn/authz capabilities so exactly the intended users of the sensitive data can access it

 c. Provide auditing for access to sensitive data and its administration

 d. Provide data life-cycle management capabilities

3. Surface Minimization: Your system should reduce the need for data to be extracted in the clear out of the store,

thereby reducing the surface area that needs to be hardened. This is done in the following ways:

a. Tokenization: Systems and processes that need to work with data without needing access to its contents can

do so via holding only tokens that represent the data. Only authorized processes can detokenize the tokens to

retrieve the sensitive data.

b. Policy-constrained partial detokenization: Users of the data who only need partial access to the data data

should get access only to that part of the data

c. Execute workflow on tokens: Systems that need to execute a workflow on the sensitive data underlying a

token should be able to execute the workflow on the token without needing to detokenize and retrieve the

sensitive data first.

4. Storage and Processing Overhead: The solution should impose a minimal reasonable performance overhead.

5. Cost effectiveness: The solution should be easy to integrate and operate.

Continued

6

These requirements are important for the reasons outlined. However, you get your real power from combinations of these:

• Functional Equivalence + Security means that Security and Functionality are not a zero-sum game. You should look for

solutions that let you have both. For instance, your solution may ask you to encrypt your customer’s zip codes, but that

means you now can’t group by zip code, then you have a zero-sum situation.

You could solve the above dilemma by decrypting your phone numbers before grouping or by providing your analytics

code decryption keys for the phone numbers. While this does solve the problem, it goes against the ‘Surface Minimiza-

tion’ requirement.

• The ‘Policy-constrained partial detokenization’ is a requirement that helps reduce your privacy risk without sacrificing

functionality. Say you need to compute the average income -- this process does not really need to know the individual

incomes, only be able to count and sum them. Another example would be when your customer service agents need

to access the last four digits of SSN and that’s all they should be able to access, not the full SSN that is masked at the

agent’s client.

Continued

7

What are the alternatives?

Let’s take a look at various alternatives and compare them against the requirements

outlined earlier.

Get out of the business of acquiring and storing user data

No, seriously! In many cases, you can free yourself of the concerns and obligations

associated with storing a data element by restructuring your business or by forming

partnerships so you don’t actually store it. For instance, if you were helping users

find a mortgage, instead of asking for detailed financial information to provide users

with tailored recommendations you could just list a bunch of general mortgage

leads. The first approach requires collecting sensitive data, the second doesn’t.

Typically, more data might be more problems, but you want that data so you can

provide more value -- Notorious B.I.G. will happily sing all the way to the bank about

how Mo’ money causes Mo’ problems.

As another example, you can take credit card information to process payment,

opening your site up to PCI obligations, or you could use a solution like Paypal or

Stripe to process payments, freeing you of those concerns while still allowing you

the same capabilities.

While this solution eliminates security concerns and storage requirements and has

a low cost of ownership, it severely hobbles your functionality. At the end of the

day, you will almost certainly find that to be effective, you have to work with data,

including sensitive data.

So let’s get back to the problem of securing the sensitive data you’re left with.

Harden the systems that read, write, store, or transmit
data

In theory, we could harden all the systems that touch any sensitive data and make

sure they work in a compliant and secure manner. In practice, this approach is

not reasonable since there is a lot of continually changing surface area to harden,

most of which doesn’t need to be burdened with the additional cost of dealing

with sensitive data. For example, it makes sense to harden the CRM system, but if

you want to bucket users by credit score, do you really want to harden the entire

analytics pipeline to the same standards as the CRM system?

This approach would leave your functionality and storage capability unchanged but

it would not meet any data storage security requirements. Moreover, by requiring

you to harden all systems that touch data, this approach imposes an unreasonable

implementation and vigilance cost. Hardening a large number of large, possibly

legacy systems that were not built with security and privacy in mind requires a lot of

time and expertise. Keeping all of them hardened as your engineering organization

grows is even harder and will slow development. It is easier to (logically or physically)

separate the data of concern so you reduce the amount of surface area that must

be hardened and systems that must be made privacy compliant.

8

Encrypt the sensitive data

We could encrypt the sensitive data at rest and as it moves through the system. We would give a privileged set of readers

the keys. Thus only the systems that really need access to the data would have the access while the others would see only

ciphertext. In this case, a breach to the database or a leak in the analytics pipeline would not have regulatory impact --

although of course, it could still negatively impact your company’s public image and credibility

It would look like this:

In this case, sensitive data is encrypted before

being written. Access to read the ciphertext is

not restricted. Systems that need the sensitive

data will be given access to the keys so they

can decrypt the ciphertext and access the

sensitive data. Other systems would only see the

non-sensitive data in the clear. Functionality is

therefore not disrupted.

The storage (size and performance) overhead of

encryption is non-zero but negligible. A good key

management and encryption system would do an

adequate job of reliable, performant encryption.

It would provide good audit logs as to when keys

were accessed, maybe even who decrypted

certain elements.

This solution would also provide satisfactory data lifecycle management

capabilities. For instance, if a user were to ask for their personal

information to be deleted from your systems (a required capability in

some jurisdictions), you can delete it from the primary system easily -- just

delete Alice’s record or her encrypted data. The problem here is that

data often ends up making copies of itself in various other databases, data

warehouses, logs, and other places. So you do not only need to delete

Alice’s encrypted data from your initial database, but also other places

that may have stored *encrypted* versions of the data.

Continued

9

Continued

Encrypt each user’s data with a key tied to that user

The last problem can be solved by modifying the above solution by encrypting each user’s data with a per-user key. When

the user wants their data deleted, we just delete the per-user key and all of this user’s encrypted data is effectively deleted.

This meets all of our requirements, except for ‘policy-constrained partial detokenization’ and ‘execute workflow on tokens’.

Let’s look at these in more detail.

Suppose you want to send the user an email nudge. You have followed all the steps so far and your user-nudge service (or

microservice) will pull the user’s encrypted information from the database, decrypt it with the user’s key and then use this

information to send the email using a 3rd party email provider. This exposes the user’s sensitive data to only the user-nudge

service . This seems reasonable, but is it the best possible solution?

Let’s take another look at our analogy with secrets management. If you have a secret key with which you need to perform

encryption and decryption, you would store the secret in your secret vault and extract it only when you need to perform

the encryption. Or, even better, you could have your secret storage mechanism do the encryption for you without ever

having to extract the secret key from storage.

Ideally, we want the same kind of capability for our data. Our data protection solution should be able to execute the

nudge-user workflow by directly communicating with the email provider. Only the email provider needs to know the user’s

sensitive data, while our user-nudge-service only needs to initiate workflows when needed, it doesn’t need the sensitive

data. The ideal solution would minimize the exposure of the sensitive data (or the underlying encryption keys!)

to systems that don’t need access to them.

Or take yet another use case. You want your customer service agents’ portal to be able to access users’ SSN for verification

purposes but only see the last 4 digits of it. In our current solution, your portal would have to extract the full SSN and then

perform the redaction. In an ideal world you would authorize your portal to only read the redacted data. This is not possible

with an off-the-shelf encryption system.

Encryption is therefore a good solution but doesn’t meet all of our needs. To solve this last gap, let’s turn to our final

alternative.

10

Continued

Use a data vault2

In this case, we replace the key manager or crypto engine with a full-fledged data vault. A data vault is something that gives
you all the goodies that the encryption solution above did (indeed, any reasonable implementation of a data vault will make
heavy use of encryption), but it is built to solve the problems encryption alone can’t.

You store the sensitive data in the data vault and replace the sensitive data with pointers returned to you by the vault. Only
authorized readers are permitted to access data from the vault (i.e. dereference the pointer to retrieve the underlying
data). Others can access only the ciphertext, or a partially or fully redacted version of the data.

More importantly, the vault allows you to execute workflows on the data without you having to extract data from the vault.
Going back to our user-nudge-service example, if we wanted to send an email to a user, instead of extracting the email
address from the vault in order to send the email, we could initiate the ‘send-email’ workflow directly from the vault, which
would initiate the operation with our CRM provider without our system ever having direct access to the email address.

Our architecture now looks like this:

Similarly, the customer service agents’

portal would be given access to only the

redacted SSN (or email) by the vault.

This solves the problems we couldn’t

solve with straight-up encryption.

112 There is a data warehousing architectural pattern of the same name. What follows is a distinct concept.

https://en.wikipedia.org/wiki/Data_vault_modeling

Continued

12

In order to meet all the requirements we had laid out above, you should also demand the following capabilities from a data

vault you build or buy:

1. The data vault should appear to your systems as an external database -- it should provide similar interfaces,

performance characteristics, and management capabilities.

2. It should provide the following security capabilities:

a. maximum encryption without sacrificing functionality

b. authn / authz of data accessors

c. auditing

3. It should provide secure deletion capabilities -- when you delete the data from the vault, all copies of the pointer

to the data in the vault become junk.

How does one design a vault to meet all of these requirements? That’s a topic we will explore in subsequent white papers.

Side-by-side comparison

13

Does anyone use a data vault?

You may be wondering here if this architectural pattern of a data vault is used in real

life. If it is, how come you don’t see this used more commonly?

Many technologies and large companies use this architectural pattern. When you

make a payment through Google Pay, Apple Pay, or Samsung Pay, you are relying

on a vault to secure and tokenize your credit card while still keeping it usable

seamlessly.

For uses more general than credit card numbers, Netflix3 has built several data

vaults, as have Goldman Sachs4, and Adyen5 to name just a few.

As you may guess, building and operating a data vault takes substantial resources.

In future white papers, we’ll show you some of the cool stuff Skyflow has done to

build a data vault as a service. If you don’t have the resources that these engineering

giants have to build your own data vault, reach out to us.

“Skyflow gives us a secure data vault, with
customizable access controls and PCI
compliance built in. It frees my team to
focus on shipping features.”

– Ed Cortis, Chief Technology Officer at Unifimoney.

14

3 “Skyflow has taken the best ideas of data vaults built at companies like Netflix and delivered them as a service with a simple Stripe-like API.
They can solve use cases that most vault efforts struggle with!” - Jitender Aswani, Head of Data and Engineering at Moveworks, Former Head of
Security/Privacy Engineering at Netflix

4 “At Barclay’s Bank and at Goldman Sachs - we relied on the data vault architecture to meet our most critical security needs for sensitive data.” -
Boe Hartman CTO NomiHealth, Former CTO of Goldman Sachs
5 From where I copied the Mo Data, Mo Problems section title

https://support.google.com/pay/merchants/answer/6345242
https://usa.visa.com/dam/VCOM/download/security/documents/visa-security-tokenization-infographic.pdf
https://www.adyen.com/blog/securing-your-personal-data-via-tokenization

About the Author

About Skyflow

Founded in 2019, Skyflow is a data privacy vault for sensitive data. The company

was founded by former Salesforce executives Anshu Sharma and Prakash Khot

to radically transform how businesses handle users’ financial, healthcare, and

other personal data that powers the digital economy. Skyflow is based in Palo Alto,

California, with offices in Bangalore, India. For more information, visit skyflow.com

or follow on Twitter and LinkedIn.

Manish Ahluwalia has over 2 decades of experience in the software industry,

with over 10 years in information-security. Most recently he was running security

for NerdWallet. He currently works to help Skyflow’s customer’s find the right

architecture for their data protection needs.

© 2022 Skyflow, Inc. All rights reserved.

http://www.skyflow.com
https://cts.businesswire.com/ct/CT?id=smartlink&url=https%3A%2F%2Ftwitter.com%2Fskyflowapi&esheet=52445957&newsitemid=20210616005595&lan=en-US&anchor=Twitter&index=6&md5=f366ab973485201e6e3028c8adc498f1
https://cts.businesswire.com/ct/CT?id=smartlink&url=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fskyflow%2F&esheet=52445957&newsitemid=20210616005595&lan=en-US&anchor=LinkedIn&index=7&md5=7e52cc901a1214688c37b1cb4d297b7c
https://skyflow.com/
https://www.linkedin.com/company/skyflow/
https://twitter.com/SkyflowAPI

